GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

European forests might not be realizing their full potential

European forest managers can have their cake and eat it, because according to a new study maximizing timber production in a forest does not necessarily have to come at a cost of reduced species diversity or the capacity to regulate climate change by the same forest. However, as the international research team, among them scientists from Senckenberg Research Institute and Natural History Museum and the University of Leipzig, point out, most European forests fall well below their possible maximum levels of these three capacities. The study was published recently in Ecology Letters.

Throughout Europe forests are usually managed with one or two major objectives. These are typically timber production, climate regulation or conservation. But this focused approach might not be necessary as trade-offs among different ecosystem processes that contribute to achieving these major three forest management objectives are relatively rare, a newly published study an international research team shows.

“One might think there is a conflict between timber production and biodiversity conservation. For example, in some cases planting trees very densely to increase timber yields might lessen understorey plant diversity or bird diversity, both important components of biodiversity conservation” explains Dr. Peter Manning, part of the research team from the Senckenberg Biodiversity and Climate Research Centre. “However overall, we found that this is the exception, not the rule; such winner-loser games are not what is really happening.”

To find out what goes on in European forests the researchers measured and correlated 28 ecosystem services and processes that underpin timber production, climate regulation and species diversity in six regions including Finland, Poland, German, Romania and Italy. They are all part of FunDivEurope, a large-scale project examining the relationships between biodiversity and ecosystem functions in forests. The group also analyzed data from national forest inventories across Europe, making the study one of the most comprehensive analyses of forest ecosystem functioning at this scale to date.

“The results show that there are synergies between ecosystem processes. For example, if the forest fares well for timber production this also means the forest makes a positive contribution to climate regulation, as tree growth also means more carbon stored” says Dr. Fons van der Plas, a researcher at University of Leipzig, who conducted the study whilst working at the Senckenberg Biodiversity and Climate Research Centre. Additionally, the researchers found, that if a forest does a good job of producing timber and regulating the climate, then this combination may go hand in hand with high levels of species diversity in the same forest.

But the potential for these newly found synergies is not capitalized on by forest managers. Currently there only a few spots throughout Europe where researchers could find simultaneous high levels of all the ecosystem processes that contribute to timber production, climate regulation and biodiversity conservation. Compared to these sites, most forests meet only half of this potential.

In light of this the researchers call for changes in forest management strategies in order to maximize ecosystem processes and thus maximize the benefits of European forests. But those new strategies have yet to be identified, as Manning quickly points out: “The next step would be to have a closer look at the few spots with a high amount of synergies between different ecosystems services to see how this works and might be transferred to other sites”.

Read the paper: Biodiversity and ecosystem functioning relations in European forests depend on environmental context.

Article source: Senckenberg Research Institute and Natural History Museum.


Forty years of data quantifies benefits of Bt corn adoption across multiple crops for the first time

University of Maryland researchers have pulled together forty years of data to quantify the effects of Bt field corn, a highly marketed and successful genetically engineered technology, in a novel and large-scale collaborative study. Other studies have demonstrated the benefits of Bt corn or cotton adoption on pest management for pests like the European corn borer or cotton bollworm in corn or cotton itself, but this is the first study to look at the effects on other offsite crops in North America. By tracking European corn borer populations, this study shows significant decreases in adult moth activity, recommended spraying regimens, and overall crop damage in vegetable crops such as sweet corn, peppers, and green beans. These benefits have never before been documented and showcase Bt crops as a powerful tool to reduce pest populations regionally thereby benefitting other crops in the agricultural landscape.

A lesson from Darwin on marine ecosystems

When British naturalist Charles Darwin traveled to the Galapagos Islands in 1835, he took notice of the giant kelp forests ringing the islands. He believed that if those forests were destroyed, a significant number of species would be lost. These underwater ecosystems, Darwin believed, could be even more important than forests on land.

Climate change risk for half of plant and animal species in biodiversity hotspots

Up to half of plant and animal species in the world's most naturally rich areas, such as the Amazon and the Galapagos, could face local extinction by the turn of the century due to climate change if carbon emissions continue to rise unchecked.